skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mohammed, Azharuddin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Extreme floods and landslides in high‐latitude watersheds have been associated with rain‐on‐snow (ROS) events. Yet, the risks of changing precipitation phases on a declining snowpack under a warming climate remain unclear. Normalizing the total annual duration of ROS with that of the seasonal snowpack, the ERA5 data (1941–2023) show that the frequency of high‐runoff ROS events is a characteristic feature of high‐latitude coastal zones, particularly over the coasts of south‐central Alaska and southern Newfoundland. Total rainfall accumulation per seasonal snowpack duration has increased across western mountain ranges, with the Olympic Mountains experiencing more than 40 mm of additional rainfall over the snowpack in the past eight decades, followed by the Sierra Nevada. These trends could drive an 8% increase in rainfall extremes (e.g., more than 10 mm for 6 hr storm with a 15‐year return period), highlighting the need for resilient flood control systems in high‐latitude coastal cities. 
    more » « less